Crosswind takeoffs and landings can be a challenge at times. That is why the Practical Test Standards requires them to be evaluated during the certification process for airplanes and helicopters. Most airplanes have a demonstrated maximum crosswind at maximum gross weight and clean configuration (no flaps). According to flight test requirements, the airplane has to be able to compensate for a crosswind of at least 0.2 Vso. If the runway is wet or contaminated with ice or snow, the crosswind capability is decreased because tire friction has a lot to do with keeping the airplane on center line below the stall speed and as flight controls become less effective. If there is a requirement to takeoff with a strong crosswind, increase the takeoff speed and start the takeoff roll with full aileron into the wind. With the higher vertical lift component being generated by the wings, the horizontal lift component generated by the slip into the wind will be larger and more effective. Torque and P-factor may help to counter the tendency of the airplane to weathervane into a right crosswind, giving the pilot more left rudder authority. Also, taking off diagonally across the runway may help reduce some of the crosswind component. As soon as the airplane establishes a positive rate of climb, the slip can be changed into a crab in order to maintain runway alignment. In attempting to land with

(Continued on page 3)
I was a lucky kid that grew up with a Grandfather who taught sailplane flying and a Dad who was just plane crazy (and still Is) about flying. We still refer to grandpa as the “Old buzzard”, a name he earned by following Turkey Vultures around with his sailplane because they always know where the best lift is. Grandpa Les believed they could smell the lift because of the dead stuff smells that came up with the thermals. My first real flight where I was at the controls and actually aware of what was going on (instead of just sleeping in the back seat) was on my 12th birthday. I was at Grandpa Les’s glider airport taking an actual lesson. What a great day. In the years that followed, I got the flying bug real bad and eventually got my glider rating, instrument, commercial, multi-engine, single engine land & sea. I owned and flew a glider for 10 years. I did the usual stuff to build hours including towing gliders, flying jump plane for a skydiving outfit and ferrying airplanes and people for free. I worked 2 jobs for 5 years to pay for all the ratings (no military or govt. help for me). Somewhere in there I managed to graduate from Humboldt University with a BS in Wildlife Biology & Range Management.

I started flying for the Fish & Wildlife Service in Montana at Charles M. Russell NWR in 1987. I mostly flew a Super Cub for waterfowl surveys and looking for trespass cattle on the refuge. I have been with the MBMO since 1991. I currently fly around 350 hours per year. I mostly fly a wheeled C-206 doing telemetry and low –level waterfowl surveys in the Pacific Flyway and Alberta, Canada. I used to fly a C-185 on floats when I was stationed in Maryland. Last year I was lucky enough to use our C-206 on floats for a Pelican survey along the Oregon coast. (See Above Photo) I currently have 3,700 hours, 2000 of which are low-level (<500’ AGL). I am one of 12 pilots that work for the MBMO.

Elizabeth K. Buelna
Flyway Biologist (Pilot)
U.S. Department of the Interior
Fish and Wildlife Service/Office of Migratory Bird Management
Waterfowl Population Surveys
Klamath Falls, OR
a crosswind, establish your slip on short final with enough distance from the runway to determine whether you will be able to compensate for the crosswind and maintain the longitudinal axis of the airplane aligned with the runway. Depending upon the length of the runway, in a strong crosswind, land with no flaps (or minimum flaps, depending upon the type of airplane) and faster airspeed to increase your crosswind capability. Landing diagonally across the runway will reduce some of the crosswind component, but be careful to keep the longitudinal axis aligned with the direction of landing. Differential thrust on twin engine airplane can be used to compensate for a strong crosswind. Increase thrust on the upwind engine and reduce the thrust on the downwind engine. Because of the higher takeoff and landing speed utilizing some techniques in a crosswind, the performance charts for landing and takeoff distances will not apply. A helicopter can usually maneuver to land and takeoff into the wind. However, if natural or manmade obstacles will not permit that, then the pilot should consider landing with a left crosswind for counter clockwise rotating main rotors or a right crosswind for clockwise rotating main rotors. Since the helicopter will have a tendency to weather wane into the wind and the pilot has to apply pedal to compensate for torque, the effect of the crosswind will reduce the possibility of running out of pedal. There is an Advisory Circular (AC90-95) that addresses unanticipated right yaws in a helicopter due to the tail rotor vortex ring state and main rotor disc vortex interference caused by a left crosswind for counter clockwise rotating main rotors. However, if you are left pedal limited due to power requirements, a left crosswind would still be a better choice with caution because more left pedal would be available. On the approach, if you run out of pedal and the helicopter starts an uncommanded yaw, immediately reduce torque, apply forward cyclic and fly out of the situation into the wind. On takeoff during the departure climb, if you run out of pedal and the helicopter starts an uncommanded yaw, depending upon obstacles, follow the yaw with forward cyclic and attempt to get airspeed or land into the wind. Loss of tail rotor authority into the wind. On takeoff during the departure climb, if you run out of pedal and the helicopter starts an uncommanded yaw, immediately reduce torque, apply forward cyclic and fly out of the situation into the wind. On takeoff during the departure climb, if you run out of pedal and the helicopter starts an uncommanded yaw, immediately reduce torque, apply forward cyclic and fly out of the situation.

IANRP History

In June 1970, several pilots got together in Minneapolis, MN to create a pilots organization whose pilots worked for DNR’s, Forestry, Game Commissions, Etc. They were from:
- Missouri - Allen C. Hoefelman
- Illinois - Walter R. Reeve
- Iowa - Sam Switzer
- Minnesota - J. J. Idees
- South Dakota - Joe Marbach
- Wisconsin - Kenneth Beghin
- Fish & Wildlife Service - Ross Hanson
- Forest Service - John Winship

I'm guessing at the names after each state, as they were names found most often in early correspondence and only the states were listed as to that first gathering.

They drew up by-laws and rules for the organization and wanted it to be the “International Association of Natural Resource Pilots” - including Canada.

On September 26, 1971 they had their first meeting at Madison, Wisconsin with 33 in attendance. Charles R. Criswell compiled the correspondence and history of the organization. Many thanks to him!

There is correspondence from Kenneth L. Beghin, of the Dept of Natural Resources, Madison, Wisconsin dated May 7, 1971 pertaining to the upcoming meeting in September.

Kenneth L. Beghin served as Temporary Chairman for the group until they elected officers at the September meeting. Ken Beghin was elected President for ’71-72.

Their second meeting was scheduled for September 1972 in Richmond, VA and was hosted by Francis N. (“Curley”) Satterlee. Allen Hoefelman was elected president for ’72-73.

In 1973 the meeting was held in Durango, CO and Allen C. Hoefelman was President (from Missouri). Vice president was Marshall Newmann of Raleigh, NC, Forest Services. He was elected President for ’73-’74, but was killed in a mid-air collision Nov. 19, 1973. Ross Hanson was Vice President.

1974 – Ross Hanson of Minneapolis, MN was President and Floran C. Higgins was Vice President. The meeting was held in Winnipeg, Manitoba, Canada. Joan Cone, author of “Easy Game Cooking” was one of the participants of the program in Winnipeg.

1975 – Charles R. Criswell was President and the meeting was held in Oklahoma City. About this time amongst the records there was correspondence from Dave Dalke to Charles Criswell. Dave being from Hudson Bay, Saskatchewan, I believe at the time.

1976 – Meeting in Helena, Montana. Cliff Higgins was President and Francis N. Satterlee was elected President for the following year, 1976-1977.

1977 – The pilots met in Wilmington, NC hosted by Billy Moore. Jim Dienstol was elected President for 1977-1978.

1978 – The meeting was held in St. Louis, Missouri and Allen C. Hoefelman was elected President for 1978-1979.

1980 – Cable, Wisconsin. Jim Dienstol President (?). 1979-1980 for Dave Dalke (?). Believe Dave’s wife was expecting their 2nd Child and he was unable to attend.

The compilation of history was mailed to Curly Satterlee on October 30, 1980 from Charles R. Criswell, Oklahoma City.

Many thanks to Jo Satterlee for editing this history and getting it to me. (editor)
I herewith petition the executive Committee of the International Association of Natural Resource Pilots for Membership.

Name
Department Title
Address
City State/Province Zip
Work Phone () Home Phone ()
Fax () E-Mail
Signature

This is a : Renewal Original Membership (Check One)
Full Member Associate member (Check One)

MAIL TO: Joe Barber, IANRP Treasurer
4121 North River Road, Springfield, OH 45502

"If you are looking for perfect safety, you will do well to sit on the ground and watch the birds, but if you really wish to learn to fly, you must mount a machine and become acquainted with its tricks by actual trial."

Wilbur Wright 1901